Strongly-Interacting Ultracold Atoms

Eric Braaten The Ohio State University

Support

DOE, Division of High Energy Physics DOE, Division of Basic Energy Sciences

Ultracold Atoms

Ultracold: much lower temperature than natural low-energy scale set by interatomic potential

natural low-energy scale: $\hbar^2/(m r_{int}^2)$

typical mass: $m \sim 10-100~m_p$

typical range*: $r_{\rm int} \sim 10 - 100 \ a_0$

Ultracold:
$$T \ll 10^{-4} - 10^{-1} \text{ K}$$
 $T \ll 10^{-9} - 10^{-6} \text{ eV}$

^{*}relevant range: $r_{\rm int}\sim (mC_6/\hbar^2)^{1/4}$, where C_6 is coefficient in van der Waals potential: $V(r)\longrightarrow -C_6/r^6$

Technology for ultracold atoms

 Atom trapping magnetic traps
 optical traps

Laser cooling (optical molasses)
 Nobel Prize in Physics – 1997

"for development of methods to cool and trap atoms with laser light" Chu, Cohen-Tannoudji, Phillips

Evaporative cooling

Bose-Einstein condensation of atoms

⁸⁷Rb atoms

Cornell and Wieman group, JILA, 1995

⁷Li atoms

Hulet group, Rice, 1995

²³Na atoms

Ketterle group, MIT, 1995

Degenerate fermionic atoms

⁶Li atoms

Hulet group, Rice, March 2001

sympathetic cooling by ⁷Li atoms

Vortices in a Bose-Einstein condensate

⁸⁷Rb atoms

Cornell group, JILA, August 1999

²³Na atoms

Ketterle group, MIT, Feb 2001

Anisotropic expansion of a Bose-Einstein condensate

²³Na atoms

Ketterle group, MIT

Interactions of ultracold atoms

are determined by scattering length a

Low-energy cross section:

$$\sigma(E) \approx 4\pi a^2$$

Generic atom:

|a| comparable to range set by interatomic potential

$$|a|\sim 10-100$$
 Å

Strongly-interacting Atoms

Strongly-interacting: |a| much larger than range set by interatomic potential

typical range*: $r_{\rm int} \sim 10-100~a_0$

Strongly-interacting: $|a| \gg 10 - 100 \text{ Å}$

Atoms with large scattering length have universal properties determined by a

"Universality of Few-Body Systems with Large Scattering Length"

Braaten and Hammer, arXiv:cond-mat/0410417, Physics Reports

*relevant range: $r_{\rm int}\sim (mC_6/\hbar^2)^{1/4}$, where C_6 is coefficient in van der Waals potential: $V(r)\longrightarrow -C_6/r^6$

large scattering length requires fine tuning!

Accidental fine tuning

⁴He: $a \approx +200 \ a_0$

⁶Li: $a_t \approx -2160 \ a_0$

85Rb: $a_s \approx +2800 \ a_0$

¹³³Cs: $a_t \approx +2405 \ a_0$

Experimental fine tuning
 tune magnetic field to a Feshbach resonance

$$a(B) \approx a_{\text{bg}} + \frac{c}{B - B_0}$$

Feshbach resonance: diatomic molecule in closed channel is tuned to resonance with 2 low energy atoms in open channel

strongly-interacting atoms can be described by Local Nonrelativistic Quantum Field Theory

quantum field $\psi_i(\vec{r},t)$ for each type of atom and for each hyperfine spin state

$$\mathcal{L} = \frac{i\hbar}{2} \left(\psi_i^{\dagger} \frac{\partial}{\partial t} \psi_i - \frac{\partial}{\partial t} \psi_i^{\dagger} \psi_i \right) + \frac{\hbar^2}{2m_i} \nabla \psi_i^{\dagger} \cdot \nabla \psi_i$$
$$- g_{ij,kl} \psi_i^{\dagger} \psi_j^{\dagger} \psi_k \psi_l$$

coupling constants $g_{ij,kl}$

Natural scattering lengths: $g_{ij,kl} \sim a_{ij,kl}$

Large scattering lengths: tune $g_{ij,kl}$ nonperturbatively as functions of ultraviolet cutoff to get large $a_{ij,kl}$

Bosonic atoms in single hyperfine spin state with large scattering length a

Universal 2-body properties:

Low-energy cross section

$$\sigma(E) pprox rac{8\pi a^2}{1 + a^2(mE/\hbar^2)}$$

Shallow 2-body bound states (dimers)

a < 0: none

a > 0: one (S-wave), with binding energy

$$E_D = \frac{\hbar^2}{ma^2}$$

Fermionic atoms in two hyperfine spin states with large scattering length a

Universal 2-body properties:

Low-energy cross section

$$\sigma(E) pprox rac{4\pi a^2}{1 + a^2(mE/\hbar^2)}$$

Shallow 2-body bound states (dimers)

a < 0: none

a > 0: one (S-wave), with binding energy

$$E_D = \frac{\hbar^2}{ma^2}$$

Anisotropic expansion of degenerate Fermi gas

Thomas group, Duke, Oct 2002

 6 Li atoms near Feshbach resonance and above T_c for superfluidity

Strong interaction limit

B = 910 G: $a \approx -\infty$ anisotropic expansion

Weak interaction limit

B = 530 G: $a \approx 0$ spherical expansion

shear viscosity coefficient: η entropy density: s

conjectured universal lower bound

Policastro, Son, and Starinets, April 2001

$$\frac{\eta}{s} \geq \frac{\hbar}{4\pi}$$

saturated by N=4 Susy-Yang-Mills with large N_c and strong coupling: perfect fluid!

Are strongly-interacting ultracold atoms a near-perfect fluid?

Gelman, Shuryak, and Zahed, Oct 2005

Interaction energy of degenerate Fermi gas

Salomon group, Paris, March 2003

⁶Li atoms near a Feshbach resonance

interaction energy as a function of magnetic field

$$E_{\rm int} \approx -0.3 \, E_{\rm kin}$$
 at $a = \infty$

smooth crossover from BCS region (a < 0) to BEC region (a > 0)

Thermodynamics of Unitary Fermi gas

• critical temperature for superfluidity?

energy per particle at T=0?

Quantitative calculations

```
Carlson and Reddy (March 2005)
Bulgac, Drut, and Magierski (May 2005)
Lee (May 2005)
Burovski, Prokof'ev, Svistunov, and Troyer (Feb 2006)
Son (April 2006)
```

Bose-Einstein condensate of diatomic molecules

Condensate of ⁶Li dimers Grimm group, Innsbruck, Nov 2003

Condensate of ⁴⁰K dimers

Jin group, JILA, Nov 2003

Condensate of ⁶Li dimers

Ketterle group, MIT, Nov 2003

Condensation of Fermi pairs

⁴⁰K atoms

Jin group, JILA, Jan 2004

cool atoms on BCS (a < 0) side of Feshbach resonance then suddenly switch to BEC side (a > 0)

⁶Li atoms

Ketterle group, MIT, March 2004

Collective modes in degenerate fermi gas

Thomas group, Duke, March 2004

radial size of cloud of ⁶Li atoms vs. time

long lifetime of oscillations suggests that cloud is superfluid

frequency in excellent agreement with prediction for hydrodynamic Fermi gas with $a = \infty$

Vortices in degenerate Fermi gas!

Ketterle group, MIT, May 2005

strongly-interacting rotating cloud of ⁶Li atoms

presented at
Workshop on Strongly Interacting Quantum Gases,
Ohio State University, April 2005

Measurement of pairing gap in degenerate Fermi gas

Grimm group, Innsbruck, May 2005

strongly-interacting ⁶Li atoms

measure pairing gap using RF spectroscopy

Fermion Superfluidity

with Imbalanced Spin Populations

⁶Li atoms in 2 hyperfine spin states

Ketterle group, MIT, Dec 2005

bottom row: majority spin component

front row: minority spin component

Bosonic atom with large scattering length a

Universal 3-body properties:

• $a = \pm \infty$: infinitely many 3-body bound states

binding energies:
$$E_T^{(n)} = (1/515.0)^n E_T^{(1)}$$

Efimov (1971)

 \bullet a > 0: interference zeroes of 3-body recombination rate at

$$a = (22.7)^n a_{\min}, \quad a_{\min} = 0.32 (m E_T^{(1)} / \hbar^2)^{1/2}$$

Nielsen and Macek (1999); Esry, Greene and Burke (1999); Bedaque, Braaten, and Hammer (2000)

 \bullet a < 0: resonant peaks in 3-body recombination rate at

$$a = (22.7)^n a_{\text{max}}, \quad a_{\text{max}}/a_{\text{min}} = -4.88$$

Braaten and Hammer (2001)

Discrete scaling symmetry: $\vec{r} \longrightarrow (22.7)^n \vec{r}$

Evidence for Efimov states

Grimm group, Innsbruck, Dec 2005

¹³²Cs atoms at 10 nK

3-body recombination: $atom + atom + atom \longrightarrow dimer + atom$

resonance peak at $a_{\rm max}>0$ minimum at $a_{\rm min}<0$ ratio $a_{\rm min}/a_{\rm max}$ agrees with universal prediction